Neural-network approximation of piecewise continuous functions: application to friction compensation

نویسندگان

  • Rastko R. Selmic
  • Frank L. Lewis
چکیده

One of the most important properties of neural nets (NNs) for control purposes is the universal approximation property. Unfortunately,, this property is generally proven for continuous functions. In most real industrial control systems there are nonsmooth functions (e.g., piecewise continuous) for which approximation results in the literature are sparse. Examples include friction, deadzone, backlash, and so on. It is found that attempts to approximate piecewise continuous functions using smooth activation functions require many NN nodes and many training iterations, and still do not yield very good results. Therefore, a novel neural-network structure is given for approximation of piecewise continuous functions of the sort that appear in friction, deadzone, backlash, and other motion control actuator nonlinearities. The novel NN consists of neurons having standard sigmoid activation functions, plus some additional neurons having a special class of nonsmooth activation functions termed "jump approximation basis function." Two types of nonsmooth jump approximation basis functions are determined- a polynomial-like basis and a sigmoid-like basis. This modified NN with additional neurons having "jump approximation" activation functions can approximate any piecewise continuous function with discontinuities at a finite number of known points. Applications of the new NN structure are made to rigid-link robotic systems with friction nonlinearities. Friction is a nonlinear effect that can limit the performance of industrial control systems; it occurs in all mechanical systems and therefore is unavoidable in control systems. It can cause tracking errors, limit cycles, and other undesirable effects. Often, inexact friction compensation is used with standard adaptive techniques that require models that are linear in the unknown parameters. It is shown here how a certain class of augmented NN, capable of approximating piecewise continuous functions, can be used for friction compensation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deadzone compensation in motion control systems using neural networks

A compensation scheme is presented for general nonlinear actuator deadzones of unknown width. The compensator uses two neural networks (NN’s), one to estimate the unknown deadzone and another to provide adaptive compensation in the feedforward path. The compensator NN has a special augmented form containing extra neurons whose activation functions provide a “jump function basis set” for approxi...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Universal approximation using incremental constructive feedforward networks with random hidden nodes

According to conventional neural network theories, single-hidden-layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes are universal approximators when all the parameters of the networks are allowed adjustable. However, as observed in most neural network implementations, tuning all the parameters of the networks may cause learning complicated and inefficie...

متن کامل

ML Theory Lecture 3

– Briefly we’ll show in Theorem 1.2 (sketched last time) that the representation question is essential — sometimes, by choosing the wrong function class, you can get a bad error, even though there are simple predictors that get 0 error. – Continuous fit I: box approximations; namely, we’ll show that a variety of functions can approximate continuous functions by showing they approximate piecewis...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2002